AOGNets: Deep AND-OR Grammar Networks for Visual Recognition
نویسندگان
چکیده
This paper presents a method of learning deep AND-OR Grammar (AOG) networks for visual recognition, which we term AOGNets. An AOGNet consists of a number of stages each of which is composed of a number of AOG building blocks. An AOG building block is designed based on a principled AND-OR grammar and represented by a hierarchical and compositional AND-OR graph [33, 46]. Each node applies some basic operation (e.g., Conv-BatchNormReLU) to its input. There are three types of nodes: an AND-node explores composition, whose input is computed by concatenating features of its child nodes; an OR-node represents alternative ways of composition in the spirit of exploitation, whose input is the element-wise sum of features of its child nodes; and a Terminal-node takes as input a channel-wise slice of the input feature map of the AOG building block. AOGNets aim to harness the best of two worlds (grammar models and deep neural networks) in representation learning with end-to-end training. In experiments, AOGNets are tested on three highly competitive image classification benchmarks: CIFAR-10, CIFAR-100 and ImageNet-1K. AOGNets obtain better performance than the widely used Residual Net [14] and most of its variants, and are comparable to the Dense Net [18]. AOGNets are also tested in object detection on the PASCAL VOC 2007 and 2012 [8] using the vanilla Faster RCNN [30] system and obtain better performance than the Residual Net.
منابع مشابه
Aircraft Visual Identification by Neural Networks
In the present paper, an efficient method for three dimensional aircraft pattern recognition is introduced. In this method, a set of simple area based features extracted from silhouette of aerial vehicles are used to recognize an aircraft type from its optical or infrared images taken by a CCD camera or a FLIR sensor. These images can be taken from any direction and distance relative to the fly...
متن کاملRecognition of Visual Events using Spatio-Temporal Information of the Video Signal
Recognition of visual events as a video analysis task has become popular in machine learning community. While the traditional approaches for detection of video events have been used for a long time, the recently evolved deep learning based methods have revolutionized this area. They have enabled event recognition systems to achieve detection rates which were not reachable by traditional approac...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملEstimation of Hand Skeletal Postures by Using Deep Convolutional Neural Networks
Hand posture estimation attracts researchers because of its many applications. Hand posture recognition systems simulate the hand postures by using mathematical algorithms. Convolutional neural networks have provided the best results in the hand posture recognition so far. In this paper, we propose a new method to estimate the hand skeletal posture by using deep convolutional neural networks. T...
متن کاملشبکه عصبی پیچشی با پنجرههای قابل تطبیق برای بازشناسی گفتار
Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1711.05847 شماره
صفحات -
تاریخ انتشار 2017